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ABSTRACT

The central results concern the initial-value problem for ut = (u)xx +

u(1-u)(u-a), -L 4 x 4 L and t ) 0, under Dirichlet conditions at x = t L.

Here m > I and 0 < a < (m+1)/(m+3). The equilibrium solutions of this

problem are determined for each L > 0 and it is shown that the to-limit set

(u 0 ) of an initial datum u0 with values in (0,1] consists of a

connected set of equilibria. This is used to determine some domains of

attraction of isolated equilibria. A novel feature of the results is that for

large L there are multiple parameter families of equilibria.

A second part of the paper gives a self-contained development of

existence, uniqueness, maximum principles, and continuous dependence on data

for more general equations ut = n(u) xx+ f(u). The results are employed in

proofs of some of the theorems referred to above.

Interest in these questions is stimulated by the occurrence of such

models in science, e.g. in fluid flow in porous media and biology.
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STABILIZATION OF SOLUTIONS OF A DEGENERATE NONLINEAR

DIFFUSION PROBLEM

Donald Aronson, Michael G. Crandall and L. A. Peletier

Introduction

In this paper we are primarily concerned with the large time behaviour of nonnelative

solutions of the initial-boundary value problem

ut I (um)xx + f(u) 
in (-L,L) x 5

+

(I) u(±L,t) = 0 in T ,

u(x,0) - u 0(x) in [-L,L]

where m > I is a parameter, f is locally Lipschitz continuous, f(O) = 0, and u0 is

bounded. Problems of this form arise in a number of areas of science; for instance, in

models for gas or fluid flow in porous media [21 and for the spread of certain biological

populations (13, 161.

This paper is divided into two part. in Part I we consider what may be called the

motivating example, Problem I which consists of Problem I with the special choice

(1) f(u) - u(1-u)(u-a)

for suitably restricted parameters a. We begin by describing in detail the set E = E(L)

of nonneqative equilibrium solutions of Problem I . Clearly E(L) contains the trivial

solution u = 0 for all L > 0. Write

E*(L) - (L)\{0j

In the description of E*(L) there are two critical parameter values L0 and LI with

0 < L0 ( LI ( +-. We show that:
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(i) E*(L) for 0 < L < L0

(ii) E*(LO) consists of one isolated positive solution

(iii) For L0 ( L 5 L1, E*(L) consists of two isolated positive solutions, p and q,

with p < q on (-L,L).

(iv) For L > LI, N a positive integer, and KI < L < (N I)L1 , E*(L) consists of one

isolated positive solution q and N J-parameter families Pj(L), j - 1...,N, of

nonnegative solutions. If L - (N+I)L1 , E*(L) contains one additional element.

Recently Smoller and Wasserman (181 studied E(L) for Problem 1' in the case

m - 1. In contrast to the result stated above, they find that Li - for m f 1. This

situation is summarized in the two diagrams in Figure 1. These diagrams indicate the

general behaviour of possible values of L plotted against umax (the maximum of u) for

u e E (L).

L pL

p

I -

a 1 a 1

(a) m 1 (b) m > 1

Figure I
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Having described the equilibrium set E(L) for Problem I* we next turn our attention

to the question of stability of the various equilibria. As in the case m = 1, it turns

out that both the trivial solution and the large positive solution q are stable. To

establish this fact we apply a stabilization theorem proved in Part II in the general

setting of Problem I.

We begin Part II by proving various basic existence, uniqueness, comparison and

regularity theorems for Problem I. None of these results are entirely new, but we know of

no place in the literature where they are conveniently collected. Further results of Part

II - in particular, the stabilization theorem - provide us with a complete metric space X

of functions on (0,1) in which the orbits of Problem I are precompact. Moreover, if
*

0 u I and u(t,u0 ) is the solution of Problem I at time t, then the w-limit

set

u(u0 ) = {w c X there exists a sequence {tn},t +

(2)
such that u(t ,u0 ) + w in X}

is contained in E(L). For n = 1 this was proved by Chafee and Infants [7].

If E{L) consists of isolated points only, as in the case of Problem I* and

0 < L < L1, we obtain that u(t,u o ) converges to a limit in E(L) as t + - (since

W(u 0) is connected). If E(L) contains continua of solutions, as in the case for

Problem I and L > L1 , then no such statement has been proved. However, if one can find

a closed invariant subset K c X such that K n E(L) is discrete, then for each u0 E K,

u~t,u0 ) converges to some point of K n E(L) as t 4 0. The stability of the trivial

solution and the large positive solution q of Problem I for L > L0  are proved by

exhibiting suitable invariant sets K.

Part I Problem I

In this part we shall consider Problem I, assuming throughout that

(1.1) f(u) = u(1-u)(u-a), 0 < a < (m+1)/(m+3)

First E(L) is studied and then, calling upon results from Part II below, W(u ) is

determined for various choices of L and u0.
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Secrion I Equilibrium Solutions

We are interested only in nonnegative solutions. A function v [-L,L] + R+ - [0,-)

is an equilibrium solution of Problem I when it is a solution of the problem

(vm)" + f(v) - 0 in (-L,L)

v(tL) - 0

While we will write (II) in the above form, v P 0 is called a solution of (II) exactly

when w - vm  is a classical solution of w" + f(wl/m) = 0, w(CL) = 0. Clearly v = 0 is

always a solution of Problem II. As we shall show below, there are also nontrivial

solutions provided that L is sufficiently large.

Suppose v im a postive solution of Problem II, i.e. it is a solution and v > 0

on (-L.L). Then there exists a e (-L,L) such that 0 < v(x) 4 v(C) for x c (-L,L)

and, clearly, vl(C) - 0. Conversely, let us seek conditions on C c (-L,L) and £ R+

which guarantee that the solution of the initial value problem

(vm)" + f(v) - 0

v) U, v'( ) = 0

is also a pcsitive solution of Problem II.

If = 1 then v S I is the unique solution of (II') (recall (1.1) - f(1) 0). If

I > 1, then f(v) < 0 for v > I implies that any solution of (II') is convex on its

domain of definition and hence cannot satisfy v(-L) 0. Thus (II') has no solutions

satisfying the boundary conditions unless V < 1. Conseq'iently, we consider only

U C (0,I).

To solve Problem II' we integrate the equation in the usual way. Multiply the

equation by (vm)', and integrate the result using the initial conditions to find

(1.2) (vm) + mF(v) - mF(V)
2

where

-4-
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F(V) =o s f(s)ds

More explicitly,

(1.3) F(v) - vm G(v)
m+3

where

G(V) - v 2 _(1+a) m3v + a 1

Since f > 0 on (a,I), F is strictly increasing on (a,1). Thus, if u>a, we can

integrate (1.2) to obtain

(1.4) fv 3;~ -~ ) "

The integrand in (1.4) has a singular point at n - ji, but F(ji) - F(n) > S(Ui-n) for some

86 0 and n near u so the singularity is integrable. Equation (1.4) defines v

implicitly as a function of IC-xi so long as v 4 i

If F(jz) < 0, then there exists a unique v c (0,a) such that F(v) - F(ui) and

r(wn) < F(U) for n c (v,u1). In this case, (1.4) represents a periodic solution of

Cvtm)" + f(v) - 0 whose values lie in fvaij. Thus, in order that (1.4) represent a

positive solution of Problem 11 it is necessary that F(Ui) )- 0.

The sign of F is determined by the sign of G and one checks that G has a unique

root a e (a,l) if anti only if GM1 < 0 or

m+1
m+3

In particular, if (1.5) holds then



F < 0 on (O,a) and F > 0 on (0,1)

whence we may restrict our attention to the range a 4 p < 1.

For u c (a,1) we have F(j) < F(p) for all n e (Ot). Thus we can extend the

integration in (1.4) down to v - 0. Define

rn-1

(1.6) "Lu/I M- 7drar(1.6) j) = 2 f0 vF(1J)-F(n)

If p - a the integrand in (1.6) may have a second singularity at q = 0. However,
M+M-1 )J/2 1-11/2 (m-31

-F(n) > 623+1 for some 5 > 0 and n > 0 near 0, so n (-F(n)) ( 6 n

near f = 0. Since m > I this singularity is integrable and X is well-defined on

[a,1).

For a positive solution v of Problem II, v - 0 only at ±L. Therefore

X(p) = IC-LI - Ic+LI

from which we conclude that - 0. To summarize, we have proven the following result:

Proposition 1 Suppose 0 < a < (m+l)/(m+3). Then v is a positive solution of Problem II

if and only if

rn-i

' x F dn = lxi for jxi 4 Lfv(xl 471-Frin)r

where U c [a,1) and L c R are related by the equation

(1.7) ) L(u) = L

and a is the unique root of F in (a,1).

In view of (1.7), there is a positive solution of Problem II for a given interval

(-L,L) if and only if L is in the range of X, i.e. L £ ([a,1)). When L - X(p) we

write v(x,p) for the corresponding positive solution. The multiplicity of these positive

solutions is the same as the multiplicity of the roots of X(p) - L, which is determined

by the shape of the graph of X. Our next result shows that the graph of (u) always has

the general features indicated in Figure 1.
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L1 ..... (L)

L0 I

CL PI i

Figure 2

C1
Proposition 2: (i) X r C[a, 1) n C (a,1)

(ii) +(i) +- and X1 (U) + +- as U i

(iii) (i) + - as p a

(iv) )'(p) has a unique root 0 (a,I).

Sefore provinq Proposition 2, we shall make a few remarks about its interpretation.

Define L = x(J 0) and L = X(}). Clearly L0 > 0 and by (ii) A(ci,Il = [LO,

Moreover

(no solutions for 0 < L < LO

X() = L has one solution for L = L0  for L > Li

two solutions for L0 < L 4 LI

It in interestinq to note tho dependence of L1  on m. Let us write P F( n;m),

a i(m) and L I = L(m). Then
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L (m) m fc(m) n 71 2o v'nm)
Ll~ ~ ~ -/ =Fn,0 d

If a e (0,1/2) then a(m) is defined and continuous for m 1 1. Moreover, as m * 1,

F(n;m) - F(n;t) and the singularity of (nlF(at1);1) - F(n;I)
- I 

= (nVF(-n;I))
- I 

at

n = 0 is not integrable. It follows from Fatou's lemma that lim L1(m) =. Thus the
m 1

nonexistence of the small Dositive solution on sufficiently large intervals is due to the

nonlinearity of the diffusion.

Proof of Proposition 2

Write

m 1

A(p) = )~U) = l ______

and use the change of variables T = n/P to obtain the expression

A(vj) . m _O ,F(_-FU)

Formally differentiating the integral yields

(1.8) A(p) A(1) - T (F()-F(TU )) dt
p 2 0 ((W F P T

For U E (a,1) we have F'(p) = m-1f(p) # 0 and it is not difficult to verify that the

integral in (1.8) is convergent, the equation is valid and, indeed, A' c C(a,i). If we

set

0(n) = 2mF(q) - nmf(n)

then A' can also be written in the form

(1.9) A'(U) = 21/ OF()-F())3/ iidD

-9q-
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To study the behaviour of A(V) as 0 + a, write

m-I
M Li) d+ I r) - It(I) + I2(V)

For rl < c< 1,

n 9

and we have already noted that the right-hand side is integrable on (O,a3, so

n- 1
F ( d n M A a) as u +

On the other hand, by previous remarks, on each compact subset of a 4 q ; p <

n M-1/F(u)-F(n) is dominated by a multiple of (p-n)- 1
/2

, so 1 0 as ,j I
2

it follows that A E C(Icx,1)).

Since 6(a) = - mf(.) < 0 we can choose y > 0 such that 9(u) K 0(a)/
2 

< n for

w E [ca, z+-y). In addition, since 0(0) = 0 we can choose 6 > 0 such that

Ie(n)l < -0(c0)/4 for n c [0,6). Thus, in particular, ji e [a, cc+y) and n E 0, )

imply

<0(a)<00(u) - 0(n) < T<0o
4

Write

21= ( +) dp - (i) + (/2l)

Arguments like those above show that 3 2(p) remains hounded as 0 ai. For I ( , (I+y)

we have
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rn-i

J (LI) a)!12 rr j P)J )1 8 '0 3/2

rni1 3/2
As p a, the integrand of (J (L) convezqes pointwise to pm- F~p) )- 3 h:ch

rn-I)- 3/2(m+1) -1/"2(m+ -)behaves like nm (m)-) near p = 0 and so is not integrable. Thus

Fatou's lemma yields J (p) - +' (and so J1 (W), A(i) -=) as p a.

To show that A(w) * and A'(w) * as u t 1 we argue similarly. First, the

rn-1
inteqrand in AUi) tends to n I//Fl)-F(n). Now F'(1) 

= 
f(1) = 0 anI F"(11 < 0, so

this has a noninteqrable singularity at 1 ani it follows that A(W) * +- as ; t 1. Th,-

inteqrand in A'(u) also tends to a noninteqrable limit since 9'(1) > 0, and it tolVws

that A'(j) * + as p + 1.

we now turn to the proof of (iv). For this we follow closely the proof given in the

case m = 1 by Smoller and Wasserman (181.

To begin with, we note several properties of the function I. They are all provee by

elementary calculations using the explicit formulas for f and F. We shall omit the

details.

A. There is a tI £ (a,1) such that 0(p) < 0 on (O,p 1

and 0() > 0 on (V ,11.

B. There is a V2 C (0,'L ) such that 0'(n) < 0 on (0,p 2

and 0'(n) > 0 on (u ,1].

C. There exists a pL3 E (0', 2) such that (p0(p))' ( 0 on (0, 3

an (nO'(p ))' > 0 on ( 13,1].
3

It follows from properties A and ! that

'( , P o 'n ( l ,1I

and, if ( < 2

'< 0 on

Thus we noed only consider A' for max{,i2 ) r U wI•

To proceed we need to examine A". For this purpose, let

-10-
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(6 ) n ° -- , ....... ( r)<

(6h)() = h(u) - h(n)), 0 4 n < W2I
and

(63h)(n) = Urh(U) - nmh(n), 0 4 n < W

A computation similar to the one yielding (1.9) produces

(6 P)(6 6')- i(6 0)(6 f)
(1.10) A"(p) f v 1 2 1)(3f m- +M-1 A'V)

2(62 F) ( 1

-"
Adding (K - W)t(w) to both sides of (1.10) we obtain

3

1 P)2 + 61 OK6 1 F - 3 f)

A" +(K - rn-1 W U (6 1) ' 2 3 F Y'r I dT

P 22 ( ),
/ 2

3 3

Observe next that 6 e = 2m6 F - 6 f so that Ku6 F - 3 6 f = (KV - 3m)6 F + 3 6 0. Thus,
1 I 3 1 2 3 1 2 1

if we choose K = 3m/p we arrive at the expression

3 2

+(2m++ A' U (616) + (61V 2)(6 2 M) r-1 -
U2u

2  
(6?F) 

/ 2

In view of properties B and C above, we have

626' = u6'(V) - Y8'(n) > 0 for max(-,U 2) < W

and it follows that

(1.11) AV) 2m+1 ) 0 for max( a,) < V(

As noted above, A'(U) < 0 for p < max(a,UI ) and A'(V) > 0 for p > Vl-

Therefore A' has at least one zero in the interval J = (max(a,j2), 2 1 The relation

(1.11) implies A"(p) > 0 at any such zero and therefore there can be at most one,

completing the proof.

-11-



Remark: As the proof shows, the result (iv) is dependent only on the properties A, B, C

of 8.

Propositions I and 2 provide a complete characterization of the set of positive

solutions of Problem II. For L0 4 L let C+(L) denote the largest solution of

L - X(p) and for L0 4 L 4 LI let U_(L) be the smallest solution (so

+( L0) _( L0 )). We distinguish the following cases

0 < L < LO. There are no positive solutions.

L = L There is a unique positive solution v(.,u (L0)).
0 + 0

L0 < L 4 L*1 There are two positive solutions p(.,L) - VC.,u_(L))

and q(.,L) - v(.,U+(L)) with p < q everywhere on (-L,L).

L > L1. There is one positive solution q(.,L) v(o,Ij+(L)).

Since v(.,Ij) depends continuously on 11 and pt(L) are continuous on their domains,

p and q are continuous functions of L on their domains.

We now show that v(o,a) - v(, (LI)) generates families of nonnegative solutions of

Problem II on intervals (-L,L) with L > L. For i e (,1] we have F() > 0 so that,

according to (1.2) (vm),C±)(U),U) 0. However, F(a) - 0, so (v m)C±%Cu)) -

(vm)'(tL1,a) - 0. It follows that v(x,a) extended as 0 for L > lxi ) L is a

solution of Problem II for L > LI and so is

v(x-h;a) for Ix-hl C L

r(x/h)
0 for Ix-hJ > L

provided Jhi 4 L - LI. More generally, we may piece several such solutions together if

their supports are disjoint. Let N be a positive integer and L > NL . For each N-

vector .= 1 ,. ) which satisfies

(1.12) -L < - L1, C + L1 ( i - L1, i = 1,...,N-1 and , + L, 4 L

the function

-12-
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xv(x- i, ) for Ix- i I 4 LI ,

r(x) 0 if Ix-& I > LI for i , 1.N

is a nonnegative solution of Problem II. We shall use PN(L) to denote the collection of

functions v(-,E) where C e R satisfies (1.12).

Clearly a nonnegative solution of Problem II is either positive or belongs to some

PN(L). We thus have:

Proposition 3 For L > L let N be the integral part [L/L1 ] of L/L I . Then with
N

P(L) - U Pj(L) we have

E (L) - Pq(.,L)} u P(L)

Remark. If L/L1 > [L/L 1 ] - N then PN(L) is a true N-parameter family, while if

N - L/L1, PN(L) contains only r(x;E), Ei = (i-1)L 1 + L1/2. Combining Propositions 1.1,

1.2 and 1.3 we arrive at the complete description of E(L) given below:

Theorem 4.

f (01 for 0 < L < L0  ,

E(L) - (0, p(.;L), q(.;L)} for L0 4 L 4 Li

10. q(-,L)} u P(L) for L < L

Section 2. Stability Theory

We now turn to the question of the large time behaviour of the solution of the

initial-bounday value problem

Ut - (u)xx + f(u) in (-L,L) x RI

11*) u(*L,t) 0 in R
+

u(.,0) U0  in (-L,L)

where f is given by (1.1) and

(1.13) u0  L (-L,L), 0 u0 4 1 a.e.

-13-



In what follows we shall, for convenience, write

0- (-L,L), QT - $1 (0,T], Q = x

Definition. A solution u of Problem I* on [0,-) is a function u : [0,) * L (0)

with the properties

(i) U c C([0,-) L I(n)) n L(Q T) for T > 0.

(ii) f uT)(T)- ff (ut + umxx) - i u0 (o) + ff fu)p

for all T > 0 and OC C2(Q) such that 0 > 0 in Q and 0 - 0 at x - iL.

A subsolution (supersolution) of Problem I on [0,-) is a function satisfying i)

and (ii) with equality replaced by < (respectively, >).

Theorem 5 (Existence and comparison)

(i) If (1.13) holds Problem I has a unique solutien u on [0,-)

and 0 < u & I a.e.

(ii) If u is a subsolution and u is a supersolution of Problem I*

U4A
then u ( u a.e. on Q.

Theorem 5 is a consequence of more general results in Part II (Theorem 12 and 13). We

will denote the solution of Problem I with the initial value u0  by u(t,u0 ). Let X be

the complete metric space with the metric d given by

X - {U E L () : 0 4 u 4 1 a.e. and u £ H(0M)}
(1.14)

d(u,v) - lu-vi + I(u
m - v m |) xL2

Recall the definition of Au 0 ) (Introduction, eq. (2)). A stablization theorem (Theorem

18) is proved in Part II which applies to Problem I* to yield:

Theorem 6 (Stabilization): Let u0  satisfy (1.13). Then fu(t,u 0 ) : t ) 1) is a compact

subset of X, w(u 0 ) is nonempty and connected in X and w(u0) c E(L).

We will use these results to show the stability of the equilibrium solutions v - 0

and v - q. For this purpose we introduce the notion of sub-and supersolutions of Problem

II,

(v m)" + f(v) - 0 in (-L,L), v(±L) 0

-14-• j



A (weak) subsolution of Problem II is a function v c C(U-L,L]) for which

n(P"v 
m 

+ f(v))dx > 0 for all p e C2 (), P ) 0 and ' (±L) = 0 and V(IL) 4 0. A

(weak) supersolution is defined by reversing the inequality and requiring v(±tL) 0.

Let v and v be respectively a sub-and a supersolution of Problem II and let

Iv,vl = {w C L'(S) : v < w 4 v a.e. on

Proposition 7 Let u0  (v,vl satisfy (1.13). Then

(i) u(t,u0 ) E [v,v] for t ) 0

and

(ii) (u 0) c [v,v] r) X.

Proof. It follows from the definitions that v(v) is a time-independent subsoi$tion

(supersolution) of Problem I *. Hence Theorems 5 and 6 imply (W. The assertion (ii)

follows from Theorem 6 and the fact that Iv,v] n X is closed in X.

Corollary 8. If u0 C [v,v] satisfies (1.13) and Iv,v] n E = (g} is a singleton, then

u(t,u 0 ) + g in X as t + -.

We next give three applications of this Corollary to the determination of domains of

attraction of the various isolated elements of E(L).

(1.15) Let L e (L 0 ,L 1 ]. Choose t c EL0,L) and E c (-L,L) such that -L ( -

+ £ < L. Set

) p(x-E,£) for X E
v(x)=

0 for x 4-et+eI

Then v is a subsolution of Problem II. Clearly v - I is a supersolution. Since

£ £ (L0,L),

v(&) = p(O,E) > p(0,L) ; p(U,L)

(see Figure 3(a) below) and it follows that

Iv,V] n E(L) = [q(L))

It now follows from Corollary 8 that u(t,u O) * q(L) in X as t whenever

u 0 C [v,vl.

-19-



(1.16) Let LE [LoL1). Chose £ e (L,L1 ] and n c (-L,L) such that

f-t -L, L 4 n 
+ 

1, and let

w(x) - plx-n,k)

Then w is a supersolution of Problem II. Since w = 0 is a subsolution, [w,w] is

invariant. In this case (see Figure 3(b))

W(0) - p(-n, E) < p(O, 1) < p(OL)

Hence

(tr] n E(L) - {0}

and therefore u(t,uO ) + 0 as t + w in X when u0 E rv,w].

(1.17) Let L > L1 . For X1 ,X2 c (-L:L) such that

-L x - L 1 < x2 - L 1 < x I + L1 < x2 + L I L

define

v +(x) -max(p(x-xl,L 1 ), P(X-x2,L1))

v (x) - min(p(x-x1 ,L 1 ), p(X-x 2 ,L 1))

See Figure 4. It is easy to verify that v
+  

is a subsolution and v- is a supersolution

of Problem II. Moreover,

[v+,1] n E(L) = {q(L)}, [O,v-l n E(L) - (0)

Thus

lir u(t,u 0 ) - q(L) for all u0 C [v+,l1

and

lim u(t,u0 ) - 0 for all u 0  [Ov-]

t +
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Figure 3

p(- ,L)

p( p (x- n, V

-L -fL -L n L nR

(a) Domain of attraction for q(*,L) (b) Domain of attraction for 0

where L C (L ,L when L E MOL0,I1 I

Figure 4

-L x -L 1  xIx2 2+L 1 L -L x L1x 2 +L I L

(a) Domain of attraction for q(*,L) (b) Domain of attraction for 0

when L > L 1  when L >L1
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It is clear that more elaborate domains of attraction for q and 0 can be

constructed. We leave further constructions to the interested reader.

Part II. General Theory

In this part of the paper we first prove existence, uniqueness and continuous

dependence on initial data of solutions of Problem I of the introduction together with

comparison results. These results are all more or less known in various contexts, but the

presentation here collects them quite conveniently. (See the remarks at the end of this

section.) After this the stabilization result used in Part I is proved.

Section 3. A Preliminary Estimate

Consider the problem

Sut = n() xx + g(x,t) (x,t) £ Q ,

(III) u(JL,t) = t) t C (0,-) ,

u(x,O) u(x) x E

where we assume that n and the data g, * and u0 satisfy the following set of

assumptions:

Al. n R * R is locally Lipschitz continuous and nondecreasing,

A2. g £ L I(QT
) 

for each T > 0,

A3. 4, c L ([0,-]),
l oc

A4. u0 c L (f).

These will be called "assumption A".

Definition. A solution u of Problem III on [0,T] is a function u with the following

properties:

(i) u c C([O,T] L ()) n L'(QT

-T8
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CIS, u tt) - f I(U P + n (u) x) +

ft n( (9))sP L~s) - n(~k'(s))iP (-L,s)ds

=fs, UO0O(0) + fJ f

2-t

for~~ al) C( such that p > 0, sp= 0 at x = L and 0 4t 4 T. A solution onfor ll P cC (T

[0,-o) means a solution on each [0,T), and a subsolution (supersolution) is defined by

(i), and (ii) with equality replaced by 4

Proposition 9 Let q be a supersolution of Problem III on 10,T] with data g^, %,*O *j

and u be a subsolution on [0,T] with data q, u., all satisfying assumption A.

Then if 4C A* we have for each X >0 and 0 < t 4T

Xt fZ (~t) A~) 1+< jl 's+ X(qg + A(U-u))+(2.1) e ~ f (uut -- 0()? ) f 11 -JJ uS A

+Q

where r+ max(r,O).

Proof. Since Au (u) is a supersolution (subsolution) and p x ;0 0~ 0) at x =-LC+L),

A
we find, using n(4' ± CC (by Al)

Ci u~t) - (t))O(t) -ff CU - C)(O + 5' )

(2.2)Q' Sf~j Cu0  A o) OO) + Jf (q -)'

where a = Cr(u) - rjC ))/(u - ^U) for u4u and a = 0 otherwise, for all P c C (Q T

such that p>) 0 and p 0 at x =±L and 0 4 t 4 T. By Al and the boundedness of

U, u, we have a c L TQ and a > 0.

We now construct a special sequence of functions [~on) to use in (2.1). Fix T > 0

and choose a sequence [an) of smooth functions such that

- a 4 UsE

andT
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(a -a)/lr 7  0 in L2 (Q
n n T

This is easily seen to be possible. Next let X E CO(A) be such that 0 r X 1. Finally

let on be the solution of the backward problem

nt + ansx Ap for x E $1, t C [0,T)

(2.3) On(±L,t) - 0 for t e 10,T)

n - X(x) for x £ Ql

This is a nondegenerate parabolic problem and has a unique solution 0 n e C-(QT) .

Lemma 10 The function n has the following properties:

A(t-'r) -(i) 0 ( 4 e on QT

(ii) ff an(nxx 2 < c2
QT

(iii) sup fa (Onx ) 2 (t) < c

where the constant c depends only on X.

Proof. Part (i) is immediate from the maximum principle and 0 4 X 4 1. To prove (ii) and

(iii), multiply the equation solved by 0 n by @nxx and integrate over 9 x (t,T) to

find - after an integration by parts -

-f~ faz Onx~nxt +. f~t a(~) 2  f. 2'n

or

fh n) 2 (t) + f a 2 + fT f (%x) 2  I fj ())2

from which we have the desired estimates.

If we set t T and 0 o n in (2.2) we obtain

-20-I1



(2.4) f (uCT) - ^l(T))X - ff (u-U) (a-a )n <
QT

As U + -U))S T n +0 + X g9s+x-T)u )P
Q T

SfS, (uO - AO e-X + ff C-94 + du-^u))+ eX s i"

Since

Ia-a I

fi Ia-a.1Iv~nxx~ I - ff Va-(an 0nx

we have, by Lemma 10 (ii),

(a-a
I(a-a ) '

n)nxx 1 1 a 2 "an nxx 2
L n L L

(&-a)

An L2

which tends to zero as n + - by the choice of an. (The spaces L' and L2  here are

taken over QT.) Thus, letting n - in (2.4) we obtain

-{ + e ( s - T )

(2.5) fn (u(T) - ^(T))X < fn (uo  u 0+ e
- T + (-^ + Au-^l+

Q T

This inequality holds for every X c C (M) with 0 < X 4 1. Hence it continues to hold

for XX) - I on {x u(T) > 'u(T)} and X = 0 otherwise (i.e. X = siq (u(T)-u(T))

completing the proof. (Clearly T may be replaced by any t, 0 4 t 4 T in the argument.)

Corollary 11. Let u and ^u be solutions of Problem III with data g, u 0 , + and

A A
g' U0 , y Then

(2.6) ,1u~t) - 1 at)IL1{ Eu Uo I 1 - I ds

-21-
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Thus, in particular, solutions of Problem III are unique.

Proof. Setting X = 0 in (2.1) we obtain

fi (u(t) - ^(t))4* ( fa (Uo - %1) + ff (g-
Qt

and

f, (U(t) - u(t))+ 4 f (u - u 0 1) + ff (9'- q) +
Qt 

I

Adding these estimates yields (2.6).

Uniqueness and continuous dependence for Problem II.

We now return to Problem I. Here we take n(u) - uInm- u which satisfies Al. By a

solution of Problem I we mean a solution u of Problem III with g = f(u), = 0 and so

on for sub-and supersolutions. Since solutions are bounded by definition,

g c L'(QT) c L'(QT)
, 

and we may use the previous results.

Theorem 12
Ai

(i) Let u, u be solutions of Problem I on [0,T] with initial data u0

and u respectively. Let K be a Lipschitz constant for f on [-M,M]

where M = max(lul , I'D ), Then
L (Q) L (QT )

Kt A
u ( t ) - ( t ) l I ( e lu - u 1 1L (S ) LI((i)

(ii) Let u be a subsolution and U a supersolution of Problem I with initial data

and .o" Then if u0 ( - follows that

u ( u

Proof. With the assumptions of (ii), Proposition 7 yields

o) +t Xs ~,+
(2.7) e

t 
r (u(t) - u(t))

+ 
r f. (uo -

) 
A+ + t

r e(f(u) f( ) + +(u -U))
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Set A K (defined as in (i)). Then r . f(r) + Kr is nondecreasing on E-M,M] and

(f(u) - f(u) + K(u - u))+ ( 2K(u - U)+

Thus if we write

h(t) = e
K t 

f (u(t) - +

(2.7) implies

h(t) < h(0) + 2K ft h(s)ds

2Kt
which implies, by Gronwall's lemma, that h(t) < h(0)e or

f, (u(t) - 4(t))
+ 

4 eKt fn (u0 - u0) +

This proves (ii). The assertion of (i follows by adding the corresponding inequality for

(^ - U)*.

Remark. The proofs here are correct for any n satisfying Al and do not require

0 < u0, 01 I

Section 4 Existence

We begin by regularizing the problem. Let £ > 0 and consider

( = m + f (u) (xt) C Q

(I) u(±L,t) = E t c (0,T]

u(x,0) = u0(x) + C X E

where

f (u) 
- 

f(u-)

The properties of f and u0 we will use are:

-23-



(H) f R + R is locally Lipschitz continuous, f(0) - f(1) - 0

and u L'(9), 0 < u0  I,00

which we refer to as hypotheses H. For a while we also assume u0 C C (Q). Then
a 0

2,1 -Problem I has, by classical results, a unique solution u C C 2'(Q T) and

(2.8) E ( U ( I + £ in T

Multiplying the equation of I by (um) and performing obvious manipulations yields

m+1 2
4m 2 t 1 umxt)2 _mflF:u t4.,1 )2t~ )t + ((u)t)) - a F,(u)(t)(m.+,)2 ft fl 2u2 ( xt}

(2.9)

I- fa ((um ) (1 - a f u)(r)

for 0 4 T 4 t 4 T, where

P (u) - sn-if (s)ds

In particular, putting T - ,

m+1 2

(2.10) f) f (uI2 sup f a (u X( t }2 ' K

,m2 awhere K depends on f, J x(uo)x but not on E E (0,1) or T. Set v - u Then (2.9),
£ £

(2.10) imply

-24-



C m 4V 4 (1 + C)

E

Iv x(tl )  2 'K

(2.11) m+1 2m 2
,v 2 " r ¢((2 ) l1t2

t L2 (0,T:L ()

M+(
m 2+~ e2 )m-(+ 1 + ofa u )t

(m )2 + C)m-1I

It follows from (2.11) that [v }C 0 < C < 1 is equicontinuous from [0,T] into L2 ()

with values in a bounded subset of H1 () (which is compactly imbedded in L2 (0)). Hence,

by Arzela-Ascoli's Theorem, there is a v £ C([O,T: L ()) and e + 0 such thatn

v +v in C([0,T]: L2 (0)). Then u + v I / m = u and u m  
u in C([OT]: L2 ()).

n n n
It is very simple to show that u is a solution of Problem I, and we omit this. (Note

that C((0,T) : L2 (0)) c C([O,T] : L1 ()).)

It remains to remove the restriction u 0 C C0(0). To this end, let u0  satisfy (2.8)

and choose a sequence {u ) c C (0), 0 u < U 1, such that
On 0 On

(2.12) lu 0 - UOnIL1 + 0 as n +.

Let be the solution of Problem I with initial data U0 n. Accordinq to Theorem 12(i)

(2.13) sup lu.(t) - u k(t)l 1  4 e K T 
tu - U~k I(I

0 tr kQ L (01) L (0)

where K is now a Lipschitz constant for f on [0,T]. By 0 4 uo 4 1, (2.12), (2.13)

there is a u £ C([0,T] : L (Q)), 0 r u 4 1, such that u + u in C((O,T] LI ()).

Clearly u is a solution of Problem I and so we have proved:

-25-
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Theorem 13. Let hypotheses H hold. ,hen Problem I has a unique solution u. Moreover,

0 4 u ( 1.

Section 5. Regularization

In this section we shall prove a regularizing property of the solution operator of

Problem I.

Theorem 14. Let hypotheses H hold and u be the solution of Problem I. Then for each

T > 0 there is a constant MT, independent of uO , such that

(i) um(t) . L'(n) for t ) T
x

and

tum(t) I M and essential variation u m(t) 4 M
x L-(t) T x(ii)

for t > T

Proof. Following [6) we denote the solution operator of Problem III with n(r) r M- 1 r

and l± = 0 by S(t,uo,g) - that is, S(t,u0,g) is the solution of Problem III at time t

if this problem has a solution. By Corollary 11, S has the Properties

(2.14) IS(tu 0 'g) - S(tu 0, g) 1 4 lu 0 - U1I + f Ig(s) - ^(s)E 1ds
L 1 0 0L 1 0L1

and

1 1 m

(2.15) XM-1 S(Xt,u 0 ,g) - S(t, X)-I u 0 ' X m- g), X > 0

where gX(t)(-) - g(t)(.). T. establish (2.15) one merely checks - using n(r) - Irlm-r

m -I I-i
- that im - 1 S(xt,u0 ,g) is in4eed a solution of Problem III with data )m lu0 , 1 gX in

place of u0 ,g and invokes the uniqueness. Now the solution u(t,u0 ) of Problem I is

exactly a solution of u - S(t,u 0 ,f(u)). By Theorem 7 of 161, properties (2.14) and (2.15)

of S and the Lipschitz continuity of f imply that for T > 0, 0 < h < r, t ) 0
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1 1
lu(t+T+h,u0) - u(t+-r,u 0 )I " ( u(T+hu(t,u0)) -U(T,U(t,

" E(r, u(t,uo )I1)

where E is a nondecreasing function of its arguments. Since 0 4 u 4 1, we have

|u(tu0 ) 1 meas R = 2L and it follows that T- 1E T,2L) is a Lipschitz constant for
L

t + u(t+T,u0) on (0,=).

The proof is completed by means of the follows lemma:

Lemma 15. Let v(t) be Lipschitz continuous with constant L, and w(t), z(t) be

continuous from [0,.) into L1 (0) and

vt = Wxx + z in D'M)

Then w(t) e L () for each t and
x

(2.16) essential variation w(t) % L + Iz(t)I

We apply this lemma to the equation

u . (um)xx + f(u)
xx

which holds in D' (i.e., in the sense of distributions). As shown above, t + u(t,u 0 )

is Lipschitz continuous from IT,-) into LI () with a constant LT independent of u .

By Lemma 15 u m(t)x e LC(S) for t > T > 0 and the variation of um(t)x is bounded by

L + lf(u(t))U 1' which is bounded. If v : (0,11 + R is smooth then vx(a)
L

v(1) - v(0) for some a e (0,1) and then

IVx I IV x(a)l + variation vL=

4 21vI + variation v •
Lf x

By approximation with smooth functions we conclude

I(um )  
L" 21u I + ess variation (u

m )
L=  L= x

2 + ess variation (um)x
-

-27-
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Thus the assertions of the theorem are established.

It remains to prove the lemma.

Proof of Lemma 15. Define the averages

1 ft+h I rt+h I ft+h
h h h ' h - t " hh t

Indeed, these averages can be defined for an arbitrary distribution F on Q by

I t

Fhl - f(t-h) ' 1  for 0 e Co(Q)

and then it is easily checked that the operation commutes with differentiations. Hence

h-1(v(t) - v(t-h) - Vht - WhXx + Zh. We conclude that WhxX e LI and

variation w,. . |W hx 1 L + Iz h(t) I
L L

* L + Iz(t)1 1 as h + 0
L

Since Wh, whxx remain bounded in LI (), whx is bounded in L (Q) and whx + wx  in

LP(0), 1 4 p < -. Letting h + 0 and using the lower semicontinuity of the variation we

obtain (2.16).

Section 6. Stabilization

Let 0 4 u0 4 I and u - u(t,u0 ) be the solution of Problem I emanating from u0 .

For each Y ) 0 define the semiorbit

Ylu 0) (u(t,u0) t }

According to Theorem 14, y(u 0) c XT where XT  is the complete metric space consisting

of those w 6 L.(0) such that

( 0 4 w 4 1, (w ) x e L (0), 1wmx I  MXL

(2.17)

and essential variation (w M ) 4 M
x T

-28-
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where M is as in Theorem 14, equipped with the metric~T

(2.18) d(u,v) -u-vL(1 + Cu - vm) x2
L(Q) L (fa)

One easily checks that X is complete. Moreover, X is compact, Indeed,*T T

{wm : w e XI} is bounded in, e.g., W 1'(0) and is thus precompact In LI (Q). it
T

follows that {w w e XT I is precompact in L1 (). Similarly,

((W,)x : w e x T  is bounded in L'(Q) and in variation. Thus it is precompact in

L'(A) and then, by the Lt boundedness, in every LP(0), I < p < -. The compactness of

X follows. We also letT

(2.19) X - {u e L"(a) : 0 4 u ( , (u m ) e L2 (a)x

equipped with the metric (2.18). Observe that

(2.20) {U n c XT and lu - ul + 0 -> u e X and d(u ,u) + 0n(r)n n

This is the standard remark that weakening a metric of a compact metric space produces the

same topology.

To study the large time behaviour of u(t,u0 ) we introduce its u-limit set:

WU0 ) - (w e X : U(tnU 0 ) + w in X for some sequence (tn} with tn +0 as n +

We collect some basic remarks.

Proposition 16. Let hypotheses H hold. Then

(i) yT(u 0 ) is a precompact subset of X for T > 0.

(ii) u(.,u O ) e C((O,") : X).

(iii) W(U ) is nonempty and connected in X.
0

(iv) If w e W(u0 ), then u(t,w) e w(u0 ) for t ) 0.
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Proof. Since yT CX which is compact, (i) follows. By (2.20), t + u(t,u ) is

continuous into X on t > T if and only if it is continuous into L1 (Q), whence weI

have (ii). The assertion (iii) follows at once from (i) and (ii). For (iv), we use that

u(t+tn,UO) - u(tU(tnUO)) so if u(tnU 0 ) + w in X (and so in L ()) we have

u(t+tnuO) + u(t,w) in L (and hence in X) by Theorem 12. Thus u(t,w) e w(u ).

Next consider the function V : X + R given by

V(C) - f (/2 (m)'2 - mF( ))dx

where

F(r) = 0 p M-f(p)dp

Clearly V : X + R is continuous.

Lemma 17. Let hypotheses H be satisfied. Then

m+1

(u 2 )t e L 2 (0,- : L2 ( )) and

m+1
4m 2 1t 2 )t2 + V(u(t'u0)) 4 V(u(su 0)) for t > s > 0(mI)2 0s 0 0u

The proof is postponed briefly while we establish the next result.

Theorem 18. Let hypotheses H be satisfied. Then w(u 0) c E.

Proof. By Lemma 17 t + V(u(t,u 0 )) is nonincreasing on t > 0. Since V is continuous

on X this implles

V(w) - inf V(u(t,u )) V. for w L W(uO )
t>-
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By the invariance of w(u 0), V(u(t,w)) = V for t > 0, w e w(u 0). Combining this with

M+I
2

Lemma 17 we deduce that (u(t,w) 2)t- 0 and thus u(t,w) w. The definition of a

solution of Problem I then implies

f + f(w)p) - 0

2-whenever ve c21f), V ) 0 and v'(±L) = 0. But this implies (wm)x + f(w) - 0 in V'.x

Since w e L" and f is Lipschitz, the equation holds classically (I.e., w e Ce )

and w = 0 at ±L. Hence w e E(L).

Proof of Lemma 17. We go back into the existence proof where, assuming u0 e CO(M), we

constructed smooth solutions u of approximate problems Ic. Putting T = 0 in (2.9)

and letting c tend to zero through the sequence £n as in that proof yields

m+14m .t 2 2
(2.21) m 2 0 f((u )t,2 + V(u(tuo)) C V(uo )

(m+l)

We note also that since u -m e H1 () for t ; 0 and (2.10) holds, we have

m 1 E01
u e H (9) for t > 0. To deduce (2.21) for general u e H (2), chonse {u n C " M

0 0 0 On 0

so that uOn + u0  in X as n + -. Writing (2.21) for un ' u(t, U0 n) in place of u

and letting n + - establishes the inequality. The lemma now follows if we show
m 1 w usu0m 1 u 1

u(s,u0 )m 
e H () for a > 0. But we know u(su ) e H (0) for u e H (9) and that

0 0 0 0 0 0

(u(s,u 0 )m)X  is bounded in L2 (1) (even L (0)) independently of u0, 0 4 u0 4 1, whence

the result.

Remarks on Part II

Section 3. The reader should notice that the whole development of this section is valid if

0 is a domain in RN  rather than an interval of R. For this one replaces r(u) byxx

Ar(u) (or En(u) where R is a suitable elliptic operator) and modifies the statement
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of the boundary conditions in Problem III. The estimate (2.1) remains valid as stated.

Various of the ideas used in this proof occur for example, in [14], [15], [17]. The paper

119] is an early example of L1-type estimates.

It is known in nonlinear semigroup theory that Problem III (with a c 3N ) has a

unique solution in the sense of this section if *,. = 0 and g e L"(QT). Moreover, for

this n need only be continuous (not locally Lipschitz continuous) and the estimates (2.1)

and (2.6) are valid for these solutions (with , = 0). However, the proof goes by showing

uniqueness (without establishing the estimates) and obtaining the estimates in the

construction of the solutions. See [61 and its references concerning the uniqueness. See,

e.g., [1], [8], [12] concerning the semigroup theory. One will not find the claims above

presented clearly in these sources, they are (true) folk-lore. Moreover, the semigroup

theory provides solutions to Problem III (with A c RN , * - 0) if g is merely LI and

u0 is merely L and n need not be a function but a graph. One can also take

u0 e H-(0), f S L I(0,T : H-(0)). However, one does not then use the above notion of

solution - in particular, u need not be bounded. See [5) concerning the H-1 theory.

Similar remarks pertain to Problem I, although now it is the LI semigroup theory (rather

than H-1 ) which should be used.

Section 4. We have given the quickest existence proof suitable for our purpose. It is

rather standard and restrictive in that it requires u0 > 0. Alternatives are provided by

the semigroup theory (see above), but this is clumsy as regards approximations by smooth

functions. To allow u0  to change sign and n to be less regular, one can approximate

n by smooth n eand regularize the equation by ut - Mrj(u) + cu) + f(u). (Again the

proofs in this section work for 0 c I?).

The argument for taking the limit in this section works in essence if lulm-lu is

-1
replaced by n(u) where n is strictly increasing and either n or n is Lipschitz

continuous. For general n, the semigroup theory is best. With it one has that
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( ut  An(u) + f(u) in QT

-lal0 t> 0

ul tO =u in S ,

has a solution (in the semigroup sense) under very mild conditions which we do not detail

here. See also [111, [3].

Section 5. The relevant reference here has been given - [6). This section depends on

N = I in that an estimate of Au in the space of measures provides compactness of Vum

in L2  only if N = 1. Moreover, we use strongly the special form Iulm-lu of the

nonlinearity. The only related work on more general nonlinearities we know of is (91,

!?O1.

Section 6. Owing to the remarks concerning Section 5, these arguments do not adapt to

N > 1. Stabilization results in higher dimensions remain an interesting open problem.
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